Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

L-Isoleucyl-t-phenylalanine dihydrate

Carl Henrik Görbitz

Department of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway
Correspondence e-mail: c.h.gorbitz@kjemi.uio.no

Received 16 March 2004
Accepted 26 March 2004
Online 30 April 2004
The structure of the title compound, $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, was derived from data collected on a very thin twinned needle. The peptide molecule is in a rare conformation normally associated with hydrophobic dipeptides that form nanotubes. Nevertheless, the present structure is divided into hydrophobic and hydrophilic layers.

Comment

L-Ile-L-Phe (IF) has been investigated as part of a systematic survey of dipeptides constructed from the five hydrophobic amino acid residues L-Ala, L-Val, l-Ile, L-Leu and l-Phe (Görbitz, 2003, and references therein). The peptide crystallized as a dihydrate and the molecular structure is shown in Fig. 1. While the vast majority of dipeptides have main-chain conformations in which one side chain is above the peptide plane and one is below, the opposite situation is observed for IF. The property of having both side chains on the same side of the peptide plane gives absolute values for the $\mathrm{C}_{1}{ }^{\beta}-\mathrm{C}_{1}{ }^{\alpha} \cdots \mathrm{C}_{2}{ }^{\alpha}$ $-\mathrm{C}_{2}{ }^{\beta}(\theta)$ torsion angle of less than 90°. For IF, the $\mathrm{C} 2-$ $\mathrm{C} 1 \cdots \mathrm{C} 7-\mathrm{C} 8$ angle is $16.0(5)^{\circ}$. The $\mathrm{C} 1-\mathrm{C} 4$ and $\mathrm{C} 1-\mathrm{C} 6-$ $\mathrm{O} 1-\mathrm{N} 2-\mathrm{C} 7$ chains are both planar and form a dihedral angle [69.0 (3) ${ }^{\circ}$] that is not significantly different from that formed by the latter chain and the plane of the phenyl ring [69.6(1) ${ }^{\circ}$]. The dihedral angle formed by the $\mathrm{C} 1-\mathrm{C} 4$ chain and the phenyl ring is $29.5(3)^{\circ}$.

IF
The limited number of dipeptides with conformations similar to IF usually have two large hydrophobic side chains (Phe, Leu or Ile) and form nanotubular structures with hydrophilic channels. This group has been called the FF class after L-Phe-L-Phe and includes l-Leu-L-Leu, L-Leu-L-Phe (LF), L-Phe-L-Leu (Görbitz, 2001) and L-Ile-L-Leu (Görbitz, 2004). L-Trp-Gly (Emge et al., 2000; Birkedal et al., 2002) is an

Figure 1
The molecular structure of IF. $2 \mathrm{H}_{2} \mathrm{O}$. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as spheres of arbitrary size.

Figure 2
The unit cell and crystal packing of (a) IF $2 \mathrm{H}_{2} \mathrm{O}$ and (b) VF (Görbitz, 2002). Each structure is viewed along the a axis. Hydrogen bonds are shown as dashed lines.
unexpected last member of the FF class. The distinctly hydrophobic title compound does not form channels, however, but rather hydrophobic and hydrophilic layers in exactly

Figure 3
A schematic illustration of the difference between the crystal structures of VF and IF and the FF class (Görbitz, 2001). Starting with VF/IF (top), every second peptide facing a water layer can undergo a rotation of $\sim 60^{\circ}$, as indicated by the small arrows, to yield the tubular patterns of LL/LF, with water molecules inside hydrophilic channels.
the same manner as L-Val-L-Phe dihydrate (VF, orthorhombic modification; Görbitz, 2002; Fig. 2). Similar hydrophilic layers were also found in L-Ala-l-Trp (AW; $\theta=37.5^{\circ}$; Emge et al., 2000), while L-Phe-L-Pro hydrate (Panneerselvam \& Chacko, 1989) has a different crystal packing arrangement, despite having a low θ value (42.3°).

The $-\mathrm{NH}_{3}{ }^{+} \ldots{ }^{-} \mathrm{OOC}-$ hydrogen bond is the signature intermolecular interaction of crystal structures of linear unblocked peptides, where it generates the familiar head-totail peptide chains. The most unusual feature of the hydrogenbond network of IF is the lack of such direct interactions between the charged terminal groups (Table 1). All amino H atoms are instead accepted by water molecules. In comparison, the hydrophilic region of AW is slightly contracted, as

Figure 4
The unit cell and crystal packing of LF (Görbitz, 2001). C atoms in molecules that have been rotated as described in Fig. 3 are shown in a darker tone.
reflected by the shrinkage of the unit-cell lengths [from $a=$ 5.6350 (14) and 5.6595 (4) \AA, and $b=8.2897$ (18) and 8.3306 (6) A for IF and VF, respectively, to $a=4.9475$ (5) \AA and $b=8.2059$ (12) A for AW]. Water molecule 2 (O2W in Fig. 1) is then eliminated, with concomitant formation of two traditional $-\mathrm{NH}_{3}{ }^{+} \ldots{ }^{-} \mathrm{OOC}$ - hydrogen bonds.

While the hydrophilic layers are identical in IF and VF, the additional terminal methyl group of the Ile residue modifies the contact interface at the centre of the hydrophobic region in such a way as to shift the space group from $P 2_{1} 2_{1} 2_{1}$ for VF to $P 2_{1}$ for IF (Fig. 2).

A schematic illustration of the transition from the layered IF and VF structures to members of the FF class is given in Fig. 3. In the process, the water content is reduced from two water molecules per peptide molecule (dihydrate) to just one (monohydrate). At the same time, the number of peptide molecules in the asymmetric unit is increased from one to two. LF is shown in Fig. 4 as an example of an FF-class structure. The water-filled channels are of rectangular shape, with van der Waals dimensions of $2.5 \times 6.0 \AA$. The molecular conformations of VF, IF and LF are compared in Table 2, which lists relevant torsion angles in the three structures. VF and IF are very similar, but it is also clear that the special folded conformation is retained by LF in the FF class.

FF itself has hexagonal symmetry, a single molecule in the asymmetric unit and a channel with a $10 \AA$ van der Waals diameter (Görbitz, 2001).

Experimental

Very thin needles of the title compound were obtained by fast evaporation of an aqueous solution at elevated temperature (333 K). The same technique was used for crystallizing compounds in the FF class (Görbitz, 2001).

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=314.38$
Monoclinic, $P 2_{1}$ 。
$a=5.6350(14) \AA$
$b=8.2897$ (18) \AA
$c=17.382$ (4) \AA
$\beta=99.256(9)^{\circ}$
$V=801.4(3) \AA^{3}$
$Z=2$
$D_{x}=1.303 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART CCD
\quad diffractometer
ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996 $)$
$T_{\min }=0.790, T_{\max }=0.999$
6941 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.082$
$S=1.08$
1741 reflections
230 parameters
H -atom parameters constrained

1741 independent reflections
1425 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.064$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-7 \rightarrow 7$
$k=-8 \rightarrow 10$
$l=-21 \rightarrow 20$

Mo $K \alpha$ radiation

Cell parameters from 3020
reflections
$\theta=2.4-26.4^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=105$ (2) K
Needle, colourless
$1.05 \times 0.01 \times 0.01 \mathrm{~mm}$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0398 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.005 \\
\Delta \rho_{\max }=0.31 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}
\end{gathered}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.283 (15)

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 W^{\text {i }}$	0.96	1.98	2.895 (5)	158
N1-H2 . ${ }^{\text {O }} 2 \mathrm{~W}$	0.96	1.91	2.806 (5)	154
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.96	2.28	2.711 (5)	106
N1-H3 \cdots O $1 W^{\text {ii }}$	0.96	1.83	2.787 (5)	175
$\mathrm{N} 2-\mathrm{H} 4 \cdots \mathrm{O} 3^{\text {iii }}$	0.90	2.10	2.891 (5)	146
$\mathrm{C} 1-\mathrm{H} 11 \cdots \mathrm{O} 1^{\text {iii }}$	1.07	2.48	3.491 (6)	158
$\mathrm{O} 1 W-\mathrm{H} 11 W \cdots \mathrm{O} 3^{\text {iii }}$	0.90	1.83	2.724 (4)	172
$\mathrm{O} 1 W-\mathrm{H} 12 W \cdots \mathrm{O} 2$	0.90	1.75	2.651 (4)	174
$\mathrm{O} 2 W-\mathrm{H} 21 W \cdots \mathrm{O} 2^{\text {i }}$	0.90	2.06	2.852 (4)	146
$\mathrm{O} 2 W-\mathrm{H} 22 W \cdots \mathrm{O} 2^{\text {iv }}$	0.90	1.94	2.763 (4)	152

Symmetry codes: (i) $x, y-1, z$; (ii) $-x, y-\frac{1}{2}, 1-z$; (iii) $x-1, y, z$; (iv) $1-x, y-\frac{1}{2}, 1-z$.

Table 2
Torsion angles $\left({ }^{\circ}\right)$ for $\mathrm{IF}, \mathrm{VF} \dagger$ and $\mathrm{LF} \ddagger$.

Torsion angle§	IF	VF	$\operatorname{LF}(A)$ 『	$\operatorname{LF}(B)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 2\left(\psi_{1}\right)$	$150.0(4)$	$151.35(11)$	$125.0(5)$	$124.3(5)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 7\left(\omega_{1}\right)$	$170.6(3)$	$172.31(11)$	$179.8(4)$	$-174.2(4)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 12\left(\varphi_{2}\right)$	$49.4(5)$	$48.55(16)$	$47.7(6)$	$49.1(6)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 12-\mathrm{O} 2\left(\psi_{T}\right)$	$48.4(5)$	$48.45(16)$	$52.7(7)$	$54.1(6)$
$\mathrm{C} 2-\mathrm{C} 1 \cdots-\mathrm{C} 7-\mathrm{C} 8(\theta)$	$16.0(5)$	$19.97(12)$	$-0.1(5)$	$3.0(5)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3\left(\chi_{1}^{1,1}\right)$	$-163.6(4)$	$-164.06(11)$	178.4	$175.7(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5\left(\chi_{1}^{1,2}\right)$	$70.9(5)$	$70.85(15)$		
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4\left(\chi_{1}^{2,1}\right)$	$171.6(4)$		$-178.9(5)$	$-175.2(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 5\left(\chi_{1}^{2,2}\right)$			$59.3(6)$	$61.5(7)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9\left(\chi_{2}^{1}\right)$	$-50.5(5)$	$-50.08(16)$	$-61.0(6)$	$-55.1(6)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10\left(\chi_{2}^{2,1}\right)$	$138.6(4)$	$138.07(13)$	$122.9(5)$	$113.0(5)$
\dagger Görbitz (2002). \ddagger Görbitz (2001). § Atomic numbering refers to IF.	ब The label			
in parentheses identifies the peptide molecule in the asymmetric unit.				

The very thin needle used for data collection proved to be a merohedral twin. Twinning was handled in the refinement by a SHELXTL (Bruker, 2000) TWIN $1000 \overline{1} 0 \overline{1} 0 \overline{1}$ command. The fractional contribution was 0.50 for each component. Positional parameters for H atoms were refined only for the two water mol-
ecules. Restraints were applied to give $\mathrm{O}-\mathrm{H}$ distances close to $0.90 \AA$ and $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angles close to 105°. Peptide H atoms were placed geometrically and included in the refinement with constraints. Free rotation was permitted for amino and methyl groups. $U_{\text {iso }}$ values for H atoms were set at $1.2 U_{\mathrm{eq}}$ of the carrier atom, or $1.5 U_{\text {eq }}$ for water, methyl and amino groups. In the absence of significant anomalous scattering effects, 1103 Friedel pairs were merged. The absolute configuration was known for the purchased material.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The purchase of the diffractometer was made possible by support from the Research Council of Norway (NFR)

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1649). Services for accessing these data are described at the back of the journal.

References

Birkedal, H., Schwarzenbach, D. \& Pattison, P. (2002). Angew. Chem. Int. Ed. 41, 754-756.
Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SAINT-Plus. Version 6.22. Bruker AXS Inc., Madison, Wisconsin, USA.
Emge, T. J., Agrawal, A., Dalessio, J. P., Dukovic, G., Inghrim, J. A., Janjua, K., Macaluso, M., Robertson, R. R., Stiglic, T. J., Volovik, Y. \& Georgiadis, M. M. (2000). Acta Cryst. C56, e469-e471.

Görbitz, C. H. (2001). Chem. Eur. J. 7, 5153-5159.
Görbitz, C. H. (2002). Acta Cryst. B58, 512-518.
Görbitz, C. H. (2003). New J. Chem. 27, 1789-1793.
Görbitz, C. H. (2004). Acta Cryst. E60, 0626-o628.
Panneerselvam, K. \& Chacko, K. K. (1989). Acta Cryst. C45, 106-109.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

